Our ncert solutions for Exercise 2.5 Class 9 maths 2. Polynomials - ncert solutions - Toppers Study is the best material for English Medium students cbse board and other state boards students.
Exercise 2.5 Class 9 maths 2. Polynomials - ncert solutions - Toppers Study
Topper Study classes prepares ncert solutions on practical base problems and comes out with the best result that helps the students and teachers as well as tutors and so many ecademic coaching classes that they need in practical life. Our ncert solutions for Exercise 2.5 Class 9 maths 2. Polynomials - ncert solutions - Toppers Study is the best material for English Medium students cbse board and other state boards students.
Exercise 2.5 Class 9 maths 2. Polynomials - ncert solutions - Toppers Study
CBSE board students who preparing for class 9 ncert solutions maths and Mathematics solved exercise chapter 2. Polynomials available and this helps in upcoming exams 2023-2024.
You can Find Mathematics solution Class 9 Chapter 2. Polynomials
- All Chapter review quick revision notes for chapter 2. Polynomials Class 9
- NCERT Solutions And Textual questions Answers Class 9 Mathematics
- Extra NCERT Book questions Answers Class 9 Mathematics
- Importatnt key points with additional Assignment and questions bank solved.
NCERT Solutions do not only help you to cover your syllabus but also will give to textual support in exams 2023-2024 to complete exercise 2.5 maths class 9 chapter 2 in english medium. So revise and practice these all cbse study materials like class 9 maths chapter 2.5 in english ncert book. Also ensure to repractice all syllabus within time or before board exams for ncert class 9 maths ex 2.5 in english.
See all solutions for class 9 maths chapter 2 exercise 2 in english medium solved questions with answers.
Exercise 2.5 class 9 Mathematics Chapter 2. Polynomials
Sure! The following topics will be covered in this article
- Exercise 2.5 Class 9 Maths 2. Polynomials - Ncert Solutions - Toppers Study
- Class 9 Ncert Solutions
- Solution Chapter 2. Polynomials Class 9
- Solutions Class 9
- Chapter 2. Polynomials Exercise 2.5 Class 9
2. Polynomials
| Exercise 2.5 |
Exercise 2.5 Class 9 maths 2. Polynomials - ncert solutions - Toppers Study
Algebraic Identities:
∵ ∴
(1) (x + y)2 = x2 + 2xy + y2
(2) (x - y)2 = x2 - 2xy + y2
(3) x2 - y2 = (x + y) (x - y)
(4) (x + a) (x + b) = x2 + (a + b)x + ab
(5) (x + y)3 = x3 + 3x2y + 3xy2 + y3
(6) (x - y)3 = x3 - 3x2y + 3xy2 - y3
(7) x3 + y3 = (x + y) (x2 - xy + y2)
(8) x3 - y3 = (x - y) (x2 + xy + y2)
(9) (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(10) x3 + y3 + z3 - 3xyz = ( x + y + z) (x2 + y2 + z2 - xy - yz - zx)
Exercise 2.5
Q1. Use suitable identities to find the following products:
(i) (x + 4) (x + 10)
(ii) (x + 8) (x – 10)
(iii) (3x + 4) (3x – 5)
(v) (3 – 2x) (3 + 2x)
Solution:
(i) (x + 4) (x + 10)
Using identity; (x + a) (x + b) = x2 + (a + b)x + ab
(x + 4) (x + 10) = x2 + (4 + 10)x + (4)(10)
= x2 + 14x + 40
(ii) (x + 8) (x – 10)
Using identity; (x + a) (x + b) = x2 + (a + b)x + ab
(x + 8) (x – 10) = x2 + [8 + (-10)]x + (8)(-10)
= x2 - 2x - 80
(iii) (3x + 4) (3x – 5)
Using identity; (x + a) (x + b) = x2 + (a + b)x + ab
(3x + 4) (3x – 5) = (3x)2 + [4 + (-5)]3x + (4)(-5)
= 9x2 - 3x - 20
Using identity; (x + y) (x - y) = x2 - y2
(v) (3 – 2x) (3 + 2x)
Using identity; (x + y) (x - y) = x2 - y2
(3 – 2x) (3 + 2x) = (3)2 - (2x)2
= 9 - 4x2
Q2. Evaluate the following products without multiplying directly:
(i) 103 × 107
(ii) 95 × 96
(iii) 104 × 96
Solution:
(i) 103 × 107 = (100 + 3) (100 + 7)
Using identity; (x + a) (x + b) = x2 + (a + b)x + ab
(100 + 3) (100 + 7) = (100)2 + (3 + 7)100 + 3×7
=10000 + 1000 + 21
= 11021
(ii) 95 × 96 = (90 + 5) (90 + 6)
Using identity; (x + a) (x + b) = x2 + (a + b)x + ab
(90 + 5) (90 + 6) = (90)2 + (5 + 6)90 + 5×6
=8100 + 990 + 30
= 9120
(iii) 104 × 96 = (100 + 4) (100 - 4)
Using identity; (x + y) (x - y) = x2 - y2
(100)2 - (4)2
=10000 - 16
= 9984
3. Factorise the following using appropriate identities:
(i) 9x2 + 6xy + y2
(ii) 4y2 – 4y + 1
Solution:
(i) 9x2 + 6xy + y2
= (3x)2 + 2.3x.y + (y)2 [ ∵ x2 + 2xy + y2 = (x + y)2]
∴ = (3x + y)2
= (3x + y) (3x + y)
(ii) 4y2 - 4y + 1
= (2y)2 - 2.2y.1 + (1)2 [ ∵ x2 - 2xy + y2 = (x - y)2]
∴ = (2y - 1)2
= (2y - 1) (2y - 1)
[ ∵ x2 - y2 = (x + y) (x - y) ]
Q4. Expand each of the following, using suitable identities:
(i) (x + 2y + 4z)2
(ii) (2x – y + z)2
(iii) (–2x + 3y + 2z)2
(iv) (3a – 7b – c)2
(v) (–2x + 5y – 3z)2
Solution:
(i) (x + 2y + 4z)2
Here let as a = x, b = 2y, c = 4z and putting the values of a, b and c in the
Identity (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
∴ (x + 2y + 4z)2 = (x)2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx
(ii) (2x – y + z)2
Here let as a = 2x, b = - y, c = z and putting the values of a, b and c in the
Identity (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
∴ (2x – y + z)2 = (2x)2 + (- y)2 + (z)2 + 2(2x)(- y) + 2(- y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 - 4xy - 2yz + 4zx
(iii) (–2x + 3y + 2z)2
Here let as a = - 2x, b = 3y, c = 2z and putting the values of a, b and c in the
Identity (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
∴ (–2x + 3y + 2z)2
= (– 2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8zx
(iv) (3a – 7b – c)2
Here let as x = 3a, y = – 7b, z = – c and putting the values of x, y and z in the
Identity (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
∴ (3a – 7b – c)2
= (3a)2 + (– 7b)2 + (– c)2 + 2(3a)(– 7b) + 2(– 7b)(– c) + 2(– c)(3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ac
(v) (–2x + 5y – 3z)2
Here let as a = - 2x, b = 5y, c = –3z and putting the values of a, b and c in the
Identity (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
∴ (–2x + 5y – 3z)2
= (– 2x)2 + (5y)2 + (– 3z)2 + 2(–2x)(5y) + 2(5y)(– 3z) + 2(– 3z)(–2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx
Q5. Factorise:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Solution:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (4z)2 + 2(2x)(3y) + 2(3y)(4z) + 2(4z)(2x)
[∵ a2 + b2 + c2 + 2ab + 2bc + 2ca = (a + b + c)2 ]
= (2x + 3y + 4z)2
= (2x + 3y + 4z) (2x + 3y + 4z)
Q6. Write the following cubes in expanded form:
(i) (2x + 1)3
(ii) (2a – 3b)3
Solution:
(i) (2x + 1)3
[using identity (a + b)3 = a3 + 3a2b + 3ab2 + b3]
(2x + 1)3 = (2x)3 + 3(2x)2(1) + 3(2x)(1)2 + (1)3
= 8x3 + 12x2 + 6x + 1
(ii) (2a – 3b)3
[Using identity (x - y)3 = x3 - 3x2y + 3xy2 - y3]
(2a - 3b)3 = (2a)3 - 3(2a)2(3b) + 3(2a)(3b)2 - (3b)3
= 8a3 - 36a2b + 54ab2 - 27b3
[using identity (a + b)3 = a3 + 3a2b + 3ab2 + b3]
[using identity (a - b)3 = a3 - 3a2b + 3ab2 - b3]
Q7. Evaluate the following using suitable identities:
(i) (99)3
(ii) (102)3
(iii) (998)3
Solution:
(i) (99)3
= (100 - 1)3
[using identity (a - b)3 = a3 - 3a2b + 3ab2 - b3]
(100 - 1)3 = (100)3 - 3(100)2(1) + 3(100)(1)2 - (1)3
= 1000000 - 30000 + 300 - 1
= 1000300 - 30001
= 970299
(ii) (102)3
= (100 + 2)3
[using identity (a + b)3 = a3 + 3a2b + 3ab2 + b3]
(100 + 2)3 = (100)3 + 3(100)2(2)+ 3(100)(2)2 + (2)3
= 1000000 + 60000 + 1200 + 8
= 1061208
(iii) (998)3
= (1000 - 2)3
[using identity (a - b)3 = a3 - 3a2b + 3ab2 - b3]
(1000 - 2)3 = (1000)3 - 3(1000)2(2)+ 3(1000)(2)2 - (2)3
= 1000000000 - 6000000 + 12000 - 8
= 1000012000 - 6000008
= 994011992
Q8. Factorise each of the following:
(i) 8a3 + b3 + 12a2b + 6ab2
(ii) 8a2 – b2 – 12a2b + 6ab2
(iii) 27 – 125a3 – 135a + 225a2
(iv) 64a3 – 27b3 – 144a2b + 108ab2
Solution:
(i) 8a3 + b3 + 12a2b + 6ab2
= (2a)3 +(b)3 + 3(2a)2(b) + 3(2a)(b)2
[Using identity x3 + y3 + 3x2y + 3xy2 = (x + y)3 ]
= (2a)3 +(b)3 + 3(2a)2(b) + 3(2a)(b)2 = (2a + b)3
= (2a + b)(2a + b)(2a + b)
(ii) 8a2 – b2 – 12a2b + 6ab2
= (2a)3 - (b)3 - 3(2a)2(b) + 3(2a)(b)2
[Using identity x3 - y3 - 3x2y + 3xy2 = (x - y)3 ]
= (2a)3 - (b)3 - 3(2a)2(b) + 3(2a)(b)2 = (2a - b)3
= (2a - b)(2a - b)(2a - b)
(iii) 27 – 125a3 – 135a + 225a2
= (3)3 - (5a)3 - 3(3)2(5a) + 3(3)(5a)2
[Using identity x3 - y3 - 3x2y + 3xy2 = (x - y)3 ]
= (3)3 - (5a)3 - 3(3)2(5a) + 3(3)(5a)2= (3 - 5a)3
= (3 - 5a)(3 - 5a)(3 - 5a)
(iv) 64a3– 27b3 – 144a2b + 108ab2
= (4a)3 - (3b)3 - 3(4a)2(3b) + 3(4a)(3b)2
[Using identity x3 - y3 - 3x2y + 3xy2 = (x - y)3 ]
= (4a)3 - (3b)3 - 3(4a)2(3b) + 3(4a)(3b)2 = (4a - 3b)3
= (4a - 3b)(4a - 3b)(4a - 3b)
[Using identity x3 - y3 - 3x2y + 3xy2 = (x - y)3 ]
Q9. Verify:
(i) x3 + y3 = (x + y) (x2 – xy + y2)
Solution:
RHS = (x + y) (x2 – xy + y2)
= x(x2 – xy + y2) + y (x2 – xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3
= x3 + y3
∵ LHS = RHS Verified
(ii) x3 – y3 = (x – y) (x2 + xy + y2)
Solution:
RHS = (x - y) (x2 + xy + y2)
x(x2 + xy + y2) - y(x2 + xy + y2)
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3
∵ LHS = RHS Verified
Q10. Factorise each of the following:
(i) 27y3 + 125z3
(ii) 64m3 – 343n3
Solution:
(i) 27y3 + 125z3
= (3y)3 + (5z)3
[Using identity x3 + y3 = (x + y) (x2 – xy + y2) ]
(3y)3 + (5z)3 = (3y + 5y) [(3y)2 - (3y)(5z) + (5z)2]
= (3y + 5y) (9y2 - 15yz + 25z2)
(ii) 64m3 – 343n3
Solution:
(ii) 64m3 – 343n3
= (4m)3 – (7n)3
[Using identity x3 – y3 = (x – y) (x2 + xy + y2) ]
(4m)3 – (7n)3 = (4m – 7n) [(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n) (16m2 + 28mn + 49n2)
Q11. Factorise : 27x3 + y3 + z3 – 9xyz
Solution:
= (3x)3 + (y)3 + (z)3 - 9xyz
∵ x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)
Using identity:
= (3x + y + z) ((3x)2 + (y)2 + (z)2 - (3x)(y) - (y)(z) - (z)(3x))
= (3x + y + z) (9x2 + y2 + z2 - 3xy - yz - 3zx)
Q12. Verify that:
x3 + y3 + z3 - 3xyz =½ (x + y + z) [(x -y)2 + (y - z)2 + (z - x)2]
LHS = ½(x + y + z) [x2 - 2xy + y2 + y2 - 2yz + z2 + z2 - 2xz + x2]
= ½(x + y + z) (2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz)
= ½ × 2(x + y + z)(x2 + y2 + z2 - xy - yz - xz)
= (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
= x3 + y3 + z3 - 3xyz [Using Identity]
LHS = RHS
Other Pages of this Chapter: 2. Polynomials
Select Your CBSE Classes
Important Study materials for classes 06, 07, 08,09,10, 11 and 12. Like CBSE Notes, Notes for Science, Notes for maths, Notes for Social Science, Notes for Accountancy, Notes for Economics, Notes for political Science, Noes for History, Notes For Bussiness Study, Physical Educations, Sample Papers, Test Papers, Mock Test Papers, Support Materials and Books.

Mathematics Class - 11th
NCERT Maths book for CBSE Students.
books
Study Materials List:
Solutions ⇒ Class 9th ⇒ Mathematics
Topper's Study
New Books